The compact form of the Linear Regression Model is
$$ y := X\; \beta + \epsilon, \; \epsilon :\sim i.i.d.(0,\sigma^2_{\epsilon} I) $$
with
$$ \begin{gather*}
y := (y_1, y_2, ..., y_T)', \text{observed}\\\\
X := \begin{pmatrix}
1 & x_{11} & ... & x_{1p} \\
... & ... & ... & ... \\
1 & x_{T1} & ... & x_{Tp}
\end{pmatrix}; \text{observed} \\\\
\beta := [\beta_0, \beta_1, ..., \beta_p]'; \text{unknown in real-life applications} \\\\
\epsilon := (\epsilon_1, ..., \epsilon_T)'; \text{unknown in real-life applications} \end{gather*} $$
AR(1): $y_t := \phi_0 + \phi_1\times y_{t-1} + \epsilon_t; \; \epsilon_t \sim iid(0,\sigma^2_{\epsilon}).$
AR(1) as Linear Regression Model:
$$ \begin{align*}y :&= X\beta + \epsilon \\\\\underbrace{y}{(T-1)\times 1} &= (y_2, ..., y_T)'\\\\\underbrace{X}{(T-1) \times 2} &= \begin{pmatrix} 1 & y_1 \\ ... & ... \\ 1 & y_{T-1} \end{pmatrix} \\\\\underbrace{\epsilon}{(T-1)\times 1} &= (\epsilon_2, ..., \epsilon{T})' \, :\sim iid (0,\sigma^2_{\epsilon})\\\\\beta &= (\phi_0, \phi_1)'.\end{align*} $$
Explanation: